Since the beginning, we have described the Pittsburgh 2030 District and its Property Partners as “a community of high-performing buildings.” It is our community’s commitment to excellence and its ability to catalyze change that drives Green Building Alliance.

Disruptions from COVID-19 revealed an important connection between buildings and community. Building design, construction, maintenance, and operations are intended to create safe and enjoyable spaces to gather—efforts which are often taken for granted. Our buildings provide spaces for us to meet, to work, to learn, and to live. Though the pandemic kept many of us from entering our buildings, it provided a unique opportunity for us to change how we engage with our community.

We pivoted to virtual events, enabling us to feature speakers from all over the region and reach over 600 people from Pittsburgh, Philadelphia, and beyond. We increased the attendance and accessibility of our events, providing virtual access to building tours which once would have been inaccessible due to noise or cramped spaces.

Of course, COVID-19 was not the only source of pain in 2020. We also witnessed overwhelming scenes of racial and social injustice, driving thousands of people to protest for change. Our first step in responding to this injustice was to study the long-standing effects of institutional racism and how it has influenced development patterns in our city. Through this, we identified something amiss in our own depiction of the Pittsburgh 2030 District.

The 2030 Challenge has always been engineered for the urban built environment because commercial buildings account for nearly 40% of global greenhouse gas emissions. As our program grew, we developed a clear boundary delineating dense commercial and institutional development from adjacent residential areas. The boundary line, however, echoed historical redlining and made it appear as if parts of our community did not exist.

This report celebrates the annual progress of buildings in the region toward reductions in energy use, water consumption, and transportation emissions while improving indoor air quality. Though progress continued in 2020, we want to acknowledge the enormous pain due to COVID-19, and how our community has demonstrated resilience and strength.
Green Building Alliance’s vision is that every building and every community is sustainable so every person can thrive. Our visualizations need to reflect these values and our aspirations, so we revised our Pittsburgh 2030 District map to depict all of our current and potential Property Partners in Pittsburgh. While the difference between the old and new maps on the next page may be subtle, it is a direct result of our desire to examine our own practices and support our vision of sustainability for all.

We encourage readers of this report to learn more about our region’s history by reading Andre Perry’s Know Your Price: Valuing Black Lives and Property in America’s Black Cities, or Dr. Mindy Fullilove’s Root Shock, or listening to a recent panel discussion hosted by the University of Pittsburgh School of Law about Gentrification in Pittsburgh (see References for link).

Our work doesn’t stop at the City limits. We work with partners throughout the region to reduce their energy and water impacts. See Figure 1.

Defining Standards for High-Performance Building

The Pittsburgh 2030 District sets the standard for high-performance building by creating a community of over 130 organizations across a variety of sectors, including business, technology, government, healthcare, hospitality, and education. Expanding GBA’s influence throughout Western Pennsylvania, the Erie 2030 District and the District Affiliate programs add another 38 organizations from across the region, building a broad coalition for change. Pittsburgh and Erie belong to a network of 23 Established Districts around the world with a total of 520 million square feet and 1,200 member organizations committed to the 2030 Challenge.

Inspiring Leadership

As a founding member of the 2030 Districts Network and the largest District to date, Pittsburgh is demonstrating leadership and inspiration in sustainable building. As we reflect on the challenges of 2020, we realize the imperative of developing a clear vision and sense of shared purpose for our Property Partners and District Affiliates. The commitment of our partners to the goals and to one another has been an integral part of the Pittsburgh 2030 District’s progress.
550+ BUILDINGS COMMITTED
86M+ SQUARE FEET COMMITTED

84% SQUARE FEET REPORTING
28.9% ENERGY REDUCTION (INCLUDING RECS)
42.1% WATER REDUCTION
122 BUILDINGS’ INDIVIDUAL IAQ DATA (2019 DATA)
What is the 2030 Challenge?

The Pittsburgh 2030 District follows the 2030 Challenge for Planning, a framework created by Architecture 2030 to drastically improve buildings’ environmental impact by 2030. Through separate goals for new construction and existing buildings, the 2030 Challenge sets rigorous but achievable reduction targets in five-year increments. New construction and major renovation projects commit to carbon neutrality by 2030, while existing buildings pursue 50% reductions in energy use below national baselines. Both new and existing buildings commit to 50% reductions in water use and transportation emissions below regional baselines, while working to improve indoor air quality.

A Performance-Based Model

According to the United Nations, in 2019, building construction and operations accounted for 38% of energy-related carbon emissions. The 2030 District Challenge model sets specific targets for buildings’ energy and water use reduction and aligns with the timeline created by the United Nations 2030 Agenda for Sustainable Development. Property Partners and District Affiliates join community organizations, utilities, designers, technology firms, and government officials to explore, test, and share a wide variety of approaches to reducing energy-related carbon emissions throughout the region.

2030 CHALLENGE: EXISTING BUILDINGS

![Graph showing energy use reduction targets for existing buildings from baseline to 2030.](figure 2)

2030 CHALLENGE: NEW CONSTRUCTION & MAJOR RENOVATIONS

![Graph showing energy use reduction targets for new construction and major renovations from baseline to 2030.](figure 3)
Sustained investment in energy efficiency, renewable energy, a decarbonized transportation system, and equitable workforce development can yield emissions reductions and catalyze an economic and environmental transformation that strengthens our entire region. The 2030 District partnership is critical to realizing that vision.

Grant Ervin
Chief Resilience Officer
City of Pittsburgh
MEASURING PERFORMANCE

To measure progress toward 2030 Challenge goals, the Pittsburgh 2030 District relies on comprehensive data collection and analysis. Individual property performance is aggregated to assess overall reductions in energy, water, and transportation emissions, in addition to improvements in indoor air quality.

Each building’s performance is determined by pairing contextual factors with metric-specific data, as reflected in Table 1. The most significant factor affecting performance in 2020 was the impact of COVID-19 and the prevailing work-from-home practices.
Baseline & Performance Metrics

Determining a building’s reduction in energy and water use requires an initial point of comparison, known as a baseline. Using the best available data, each building is assigned an initial baseline value, which considers various features depending on the metric. Unique use types, such as public event facilities, have custom baselines referencing their historic performance.

<table>
<thead>
<tr>
<th></th>
<th>ENERGY</th>
<th>WATER</th>
<th>TRANSPORTATION</th>
<th>INDOOR AIR QUALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE TYPE</td>
<td>National Baseline</td>
<td>Local Baseline</td>
<td>Local Baseline</td>
<td>Recommended Best Practices</td>
</tr>
<tr>
<td>BASELINE SOURCE</td>
<td>2003 Commercial Building Energy Consumption Survey (CBECS)</td>
<td>2009–2012 Pittsburgh Water & Sewer Authority water usage</td>
<td>2013 Southwestern Pennsylvania Commission commuting models</td>
<td>University of Pittsburgh pilot study; best practices from building rating systems, including BREEAM, LEED, WELL, FitWell, RESET, Living Building Challenge, and Core</td>
</tr>
</tbody>
</table>
| **BASELINE CONSIDERATIONS** | • Climate zone
• Building use type(s)
• Occupancy
• Weather | • Building use type(s)
• Building size | Location: Downtown or Oakland | • Building use type
• Building size |
| **IMPACT METRIC** | Annual Energy Use Intensity (EUI) | Annual Water Use Intensity (WUI) | Carbon emissions per person trip per year | N/A |
| **MEASUREMENT UNITS** | kBtus/square foot/year | Gallons/square foot/year | kgCO₂/person trip/year | Points-based system |
| **TRACKING METHOD** | ENERGY STAR Portfolio Manager | ENERGY STAR Portfolio Manager | 2018 Make My Trip Count regional survey | GBA 2019 Indoor Air Quality Survey |
| **REPORTING 2020 PERFORMANCE** | 409 buildings, 72.6 million square feet, 84% of total committed square feet | 348 Buildings, 66.6 million square feet, 77% of total committed square feet | 10% of Downtown and Oakland Commuters (2018 data) | 122 Buildings, 26.3 million square feet (2019 data) |
COVID-19 IMPACT

Some changes that arose from the COVID-19 pandemic are likely here to stay. Though it is far too soon to predict the “new normal” of commercial building operations, below are some trends worth following.

Virtual work had been increasing in popularity for the past decade, and the pandemic further solidified this trend. The increase in remote work may cause changes to employee benefits, including the addition of utility bill reimbursement, but it will not change the need for collaborative office space.⁷,⁸

COVID-19 has changed the conversation on common spaces and health in buildings. Attention to indoor air quality has become a priority for facilities staff. (See “COVID-19 and the Focus on Indoor Air” on page 15 for more discussion.) Common spaces will not disappear, but they will likely adopt more touchless features, partitioned meeting areas, and grab-and-go sealed food items.⁹,¹⁰

Social distancing, masking, and limiting contact with colleagues will continue to be prevalent wherever possible.

Post-pandemic, there is a unique opportunity to promote safety, health, and efficiency in buildings. Implementing safety practices in buildings is an issue of equity, especially considering the cost-prohibitive measures required to safely operate community anchors like schools, senior centers, and churches.¹¹ Federal legislation has been helping to fund these practices. The March 2021 COVID-19 relief bill granted nearly $170 billion to K–12 schools and colleges to install ventilation systems, purchase personal protective equipment, and implement social distancing practices to create smaller classes.¹²

Thoughtful distribution of funds can be used to reinvest in the health of buildings in neglected communities, such as Black communities, which are 1.5 times more likely to be located near facilities that pollute.¹³,¹⁴

ENERGY

An Unusual Year

In 2020, the Pittsburgh 2030 District reduced energy usage to 28.9%* below the baseline, an improvement from 23.1%* in 2019. Without the impact of renewable energy credits (RECs), the decrease in energy use from 2019 to 2020 was 6.8%. The District avoided 304,132 metric tons of CO₂e in 2020—equal to installing 84 wind turbines.

The reduction in energy use in 2020 is undoubtedly connected to decreased building occupancy due to COVID-19. The closure of commercial buildings in favor of work-from-home practices shifted energy usage from offices to homes, highlighted by the fact that Pennsylvania residential energy consumption increased by 11.7% in the 2nd quarter of 2020.¹⁵ Multifamily buildings in the District show the same trend—their energy use increased by 4% compared to 2019. For these reasons, GBA expected the decrease in energy use from 2019 to 2020 to be more drastic. Changing ventilation guidance played a factor: as experts learned more about the transmissibility of the virus, many building operators increased outside air demand, which resulted in additional energy use.

Partners expressed that buildings were not made to be completely shut down: if only part of an office is occupied, often the entire building needs to be heated or cooled. Supporting this claim, office buildings in the District only reduced energy usage by an additional 3.8% between 2019 and 2020. Other use types, such as museums and sports arenas, saw huge decreases in energy use tied to cancelling events or limiting attendance. Energy use in these spaces decreased by 15.2% and 8.5%, respectively.

COVID-19 has emphasized the need for flexible, responsive buildings. Adaptable buildings are the way of the future. Spaces need to be designed with motion sensors, zoned mechanical systems, and demand-controlled ventilation which can adjust to changing conditions, such as reduced occupancy.

* These percentages include the impacts of renewable energy credits (RECs).

PARTNERS PURCHASED ROUGHLY

196,000

MWH OF RECS IN 2020
Renewable Energy at the District Scale

The Pittsburgh 2030 District became the first in the world to include district-wide renewable energy in its overall performance in 2018. In 2020, Property Partners purchased over 196,000 MWh of off-site renewable energy, representing 6.7% of all energy used. The purchase of renewable energy avoided 20,000 metric tons of carbon emissions.

2020 proved to be an important year for renewables, with many Property Partners making significant commitments to reduce fossil fuel usage. Higher education was a champion of clean energy. The University of Pittsburgh revealed its plan to purchase a 20 MW solar array to cover 13% of its power needs, and the Community College of Allegheny County finished a new 540 kW array on its North Campus in 2021. The City and its partners in the Western Pennsylvania Energy Consortium signed a 12-month agreement to purchase 100% renewable electricity for its members. Continuing regional investments in renewables, Allegheny County entered into a power purchase agreement with Rye Development to purchase 7.4 MW of electricity from a proposed hydroelectric facility at the Emsworth Dam. Financial institutions also played a large role in clean energy. PNC Financial Services renewed its commitment to purchase 100% of its electricity from renewable sources by 2025 and to provide financing for solar and wind projects. Similarly, BNY Mellon pledged to reduce its greenhouse gas emissions by 20% from a 2018 baseline by 2025.
ENERGY CASE STUDY

Plug Load Reduction at Community College of Allegheny County (CCAC)

Motivation:
Energy reduction, cost savings

Social/Environmental Benefits:
Less energy, lower carbon emissions

Building Area Affected:
1,500,000 square feet

Project Team:
Tim Myers, IT System Administrator; Elaine Sadowski, Director of Energy and Sustainability

The Community College of Allegheny County (CCAC) dramatically saved energy through a network-wide power management system that put unused computers to sleep. In many offices and computer labs, computers were on 24/7 even when not in use. CCAC disabled hibernation on computers to enable remote upgrades and installations, but due to improvements in hardware and software, the College had to revisit its strategy.

Using Dell Command Configure, CCAC changed settings on its Dell computers to allow computers to sleep when not in use. CCAC used Microsoft’s Configuration Manager to monitor power consumption before and after settings were changed. The Configuration Manager is a paid software that can be used by any organization with a Microsoft domain. After sleep settings were adjusted, the college used Group Policy Preferences to deploy Windows power plans, allowing CCAC to create and force energy reduction plans unique to the needs of various computers. These changes led to large energy and cost savings.

Figure 7 shows the daily kWh consumption of all computers before and after the power savings plan was implemented. The energy savings from the new configuration were immediate and long lasting. Energy consumption across all computers dropped from 120,908 kWh/month to 31,708 kWh/month, a reduction of 74%. On average, each computer now consumes 9 kWh/month instead of 33 kWh/month. CCAC’s energy reduction equates to $60,000–$75,000 saved annually.

![Computer Electricity Use Graph](image)
The pandemic opened our eyes in new ways – though we focus on energy efficient buildings, even without students we still used a lot of energy. It showed us the need for flexible and adaptive buildings.

Christopher Hill
Vice President of Operations, Physical Plant, Point Park University
WATER

Shifting Water Usage

In 2020, the Pittsburgh 2030 District reduced water consumption by an astounding 42.1% compared to a 19.8% reduction in 2019. This reduction equates to 678 million gallons, the equivalent water use of nearly 8.6 million baths.

COVID-19 prompted property owners to deactivate exterior water features to deter public gatherings and to curtail food service. Office workers substantially shifted water usage from offices to homes, which accounted for the most substantial impact. Of course, use types played a role. The Pittsburgh 2030 District boasts a large cohort of museums, colleges, universities, and residence halls, which saw their populations decrease dramatically during the year. Other than a few special cases, such as hospitals and fast food, it is reasonable to assume that the commercial water usage in 2020 is the minimum amount of water needed to keep buildings operating at a safe level for future return to full occupancy.

2020 WATER USE EQUIVALENT TO
8,470,000
BATHS
WATER CASE STUDY

Building Community: The River Plaza at the David L. Lawrence Convention Center

Motivation:
Repair existing roof leaks, increase ease of maintenance

Social/Environmental Benefits:
Improve air quality, provide access to nature, reduce stormwater runoff, reduce heat island effect

Total Area:
~17,000 ft²

Total Added Green Space:
4,582 ft²

Architect:
Indovina Associate Architects LLC

Construction Manager:
Mascaro Construction Company

Construction Inspection Services:
Wiss, Janney, Elstner Associates, Inc.

Landscape Architect:
Eisler Landscapes

The David L. Lawrence Convention Center has naturally been a gathering place both locally and around the region. When time came to repair the fourth-floor rooftop terrace, the most logical and compelling option for the Sports & Exhibition Authority (SEA) was to create a beautiful meeting space for the community.

Originally an unappealing slab of concrete between the Convention Center’s arched rooflines, the new River Plaza has spectacular views of the Allegheny River and Downtown. Phase 1 of the redesign focused on the Downtown portion of the Plaza and features a multitude of raised planters, seating options, and permeable, removable pavers.

The pavers solve two important issues: easing roof maintenance and keeping water from pooling on the redesigned meeting area. Removing the pavers provides access to the roofing below, consisting of a waterproof membrane and a two-ply modified bitumen system that provides insulation.

Raised planters are located around access points to the Plaza, helping to reduce stormwater runoff, reduce heat-island effect, and improve air quality. The planters contain a mixture of ornamental grasses, perennials, and small shrubs that transform throughout the seasons. A section of planters is reserved for food-service providers to create on-site vegetable gardens, with a trellis to grow hops, providing a “farm-to-table” experience for guests. Anchors for tents have been strategically placed on the Plaza, offering the opportunity to shade up to 450 visitors. Phase 2 of this project will transform the Allegheny River portion of the terrace.
Measuring Indoor Air Quality

While average levels of air pollution in Pittsburgh have decreased since 2000, the region still ranks 8th in the nation for high levels of annual particle pollution. Because outdoor air quality directly affects indoor air quality (IAQ), and combined with the fact that Americans on average spend 90% of their time indoors, IAQ was chosen as the Pittsburgh 2030 District’s fourth performance metric.

In 2019, the Pittsburgh 2030 District created a survey to capture partners’ actions that affect IAQ. Questions were based on best practices from multiple building rating systems as well as a pilot study done with the University of Pittsburgh. Over 120 buildings’ unique practices were captured. This dataset provides insight into what practices Pittsburgh building owners and managers implemented to improve indoor air quality prior to changes made during the pandemic.

Baselines and Scorecards

The Pittsburgh 2030 District created “scorecards” or baselines for individual buildings as well as for use types in order to measure their performance. Questions were divided into five categories: testing + monitoring, building policy + occupant behavior, building characteristics + ventilation systems, operations + maintenance, and materials policy. Respondents earned points for each question based on their answer. Points earned for individual questions were totaled by category to provide partners a diagnostic to highlight areas in which they are performing well and those that have room for improvement.
COVID-19 and the Focus on Indoor Air

COVID-19 dramatically increased the importance of indoor air quality. IAQ was thrust into the spotlight as concerns surfaced regarding pathogen transmission through the air. To protect occupant health and safety, partners took several actions proven to improve indoor air quality, including flushing spaces after events, increasing outdoor air intake, increasing filtration, and installing more aggressive filters.24

The pandemic has forever raised the standards of air filtration and circulation, emphasizing high-performance ventilation, outdoor air exchangers, negative-pressure air handlers, and air sanitation strategies. Though taken as a response to COVID-19, the improved IAQ actions that building operators have implemented will benefit occupant health long into the future.

The pandemic has forever raised the standards of indoor air quality

Future Actions to Consider

The 2019 survey highlighted three areas for improvement: envelope commissioning, monitoring indoor air quality, and materials purchasing. Commissioning and tightening the building envelope has several benefits—it increases occupant comfort and energy efficiency, reduces ambient noise, and improves indoor air quality.25 A tight envelope with proper ventilation prevents outdoor particles from entering the building.

Monitoring IAQ data can help determine if a space is adequately ventilated. A common datapoint to track is the concentration of CO\textsubscript{2} in a space, which directly affects occupant health. CO\textsubscript{2} levels greater than 1000 parts per million can result in headaches, fatigue, and trouble concentrating. Combining IAQ monitoring with demand-controlled ventilation helps ensure better indoor air quality for occupants.

Building materials affect the number of particulates in the air. The International Living Future Institute’s Red List highlights common materials found in the building industry that pollute either the environment, the food chain, or negatively affect human health.26 Choosing certified green cleaning products, purchasing materials that have low to no volatile organic compounds (VOCs), and asking for product disclosures of Red List chemicals are three strategies to help reduce harmful particles from indoor materials. Eliminating the use of products with materials such as Red List chemicals will improve human and environmental health while incentivizing manufacturers to use less-harmful alternatives.
INDOOR AIR QUALITY CASE STUDY

Healthy Buildings, Healthy Occupants: Point Park University

Motivation:
Protect occupant health and safety

Social/Environmental Benefits:
Improve indoor air quality, improve occupant health, increase productivity

Project Team:
Christopher Hill, Vice President of Operations at Point Park University; Joe Burgunder, Mid-Atlantic Services Team Leader, TRANE

Point Park University (PPU) responded to COVID-19 by moving to online education and establishing a task force to develop appropriate responses to the emergency. Because the University’s vision includes an intense focus on student success through experiential learning, it was imperative that PPU chart a path toward in-person instruction that prioritized the health and safety of its faculty, staff, and 4,000 students. PPU partnered with TRANE to better understand how the virus spreads through buildings and to provide indoor air quality solutions based on guidance from the Center for Disease Control, the World Health Organization, and ASHRAE. PPU followed TRANE’s 3-step framework to assess, mitigate, and manage indoor air quality.

Assessment of the current condition focused on four pillars:

- **Dilute:** Increasing outdoor air
- **Exhaust:** Exhausting indoor air
- **Contain:** Maintaining indoor humidity
- **Clean:** Safely cleaning HVAC systems

The IAQ Assessment developed a baseline condition of damper position, airflow, fan speed, temperature, humidity, pressure, occupancy schedules, and return CO₂ from which to model and measure recommended interventions.

TRANE recommended diluting and exhausting indoor air by adjusting the economizer and demand control ventilation setpoints. TRANE also recommended increasing filtration to MERV-13 and monitoring temperature, pressure, and humidity for occupant comfort.

To manage energy use, PPU modified occupancy schedules, adjusted economizer operation and humidity control sequences, and performed regular monitoring of system performance.
TRANSPORTATION

A Regional Commuter Survey

Transportation has a significant impact on air quality, for which Pittsburgh consistently ranks among the worst in the country. Vehicle emissions are responsible for 18% of the region’s greenhouse gas emissions and 22% of its air pollution. To begin tracking transportation choices, the Pittsburgh 2030 District published Make My Trip Count (MMTC). MMTC was the region’s first comprehensive commuter survey which recorded over 20,000 responses and measured various modes of transportation. Developed in collaboration with EMC Research and 19 transportation partners, MMTC captured commuter choices at the census block level, providing regional transportation agencies with more granular data to support transportation decisions. Several agencies used the data to advocate for policy change related to transportation modes. Others used the data to inform decisions related to infrastructure planning. Still others evaluated the data when considering their operations and services.

For more information about methodology and the transportation organizations we partnered with, refer to Pittsburgh 2030 District 2019 Progress Report.
1,850,000+ METRIC TONS CO$_2$e AVOIDED

$205.8 MILLION SAVED

REDUCED TOTAL ENERGY USE BY 14.9 BILLION KBTUS

REDUCED TOTAL WATER USE BY 1.6 BILLION GALLONS

CUMULATIVE IMPACT
A New Energy Future

In late 2020, GBA invited Mayor William Peduto and Dr. Leslie Marshall from the University of Pittsburgh Center for Sustainable Business to present the Marshall Plan for Middle America to 2030 District partners. The plan was created to “drive transformative investment in the region that will not only stimulate the economy and allow it to compete nationally and internationally, [but will] also create avenues to redress long-standing injustices.”

To accomplish this, the Marshall Plan for Middle America aims to catalyze similar-sized metropolitan areas throughout Appalachia to invest in a new energy future through clean energy development, system-wide impacts, and community engagement.

Green Building Alliance understands the role our partners play as leaders in the transformation of Pittsburgh to a model of clean energy innovation. We are proud of the impact that the Pittsburgh 2030 District has had on the region’s transition to reduced energy demand and cleaner energy investments prior to the Marshall Plan for Middle America, and we look forward to continuing this progress toward a new energy future.

A Region of Influence

In addition to the Pittsburgh 2030 District, Green Building Alliance manages the Erie 2030 District. Erie became the 22nd Established 2030 District in the fall of 2019, and has grown to 17 Property Partners and approximately 4 million square feet. The Erie 2030 District published its first Progress Report in August 2020, demonstrating a 14.8% reduction in energy use in 2019. Many partners have been installing solar panels and transitioning to LED lighting to reduce energy use.

As the District continues to grow, it stays grounded in the core purpose of the 2030 Network: community. Erie Partners have attended virtual Pittsburgh 2030 District meetings for increased education and to develop a wider network of support. The Erie 2030 District has its own bi-monthly Partner Meetings, which is an important space for regionally specific topics and discussion. Future plans for the Erie 2030 District include beginning to track water data in 2021.

The City of Pittsburgh has purchased 100% renewable electricity, established a Net Zero Buildings policy, embarked upon a Street Lighting Retrofit initiative, and much more.
STATEMENT OF LAND ACKNOWLEDGEMENT:

We recognize that the City of Pittsburgh and many of the 2030 District properties occupy the historic land of the Osage and Shawnee peoples. While we cannot change the past, we can move forward with purpose, and work toward a vision that respects all people and provides places where all can thrive.
Value of Community

The Pittsburgh 2030 District’s success stems from its extensive community of partners and sponsors. Our network of Property Partners spans multiple sectors of Pittsburgh, welcoming all to explore facets of building efficiency and possibilities for future progress in their buildings. Partners are invited to monthly meetings that feature presentations from technical experts, service providers, and building owners that showcase successful projects. These sessions are framed through a regional lens in which partners share best practices and challenges with a diverse group of public and private organizations. In 10+ meetings throughout the year, partners gain direct access to policymakers, regional thought leaders, university researchers, and financial organizations. Pittsburgh 2030 District partners form a community of well-informed and purposeful leaders that have the knowledge to positively impact building development and operations throughout the region.

Individual Technical Evaluations

GBA consults with Property Partners and District Affiliates one-on-one to identify critical investments toward achieving their individual reduction targets. Partners receive a confidential annual performance report that analyzes their progress toward the 2030 Challenge goals. These reports highlight partners’ current and former performance, while GBA staff provide context and ideas for specific building upgrades. Where possible, reports also compare a building’s performance to similar, anonymized local buildings.

Become a Property Partner or District Affiliate

Distinguish your organization or school district by joining Pittsburgh’s most influential network of building owners and developers. Upon commitment to the 2030 Challenge goals, Property Partners gain access to a community of technical experts, service providers, and fellow building management professionals as well as individualized property benchmarking and evaluation. For organizations outside District boundaries, any existing, newly constructed, or emerging property in Western Pennsylvania can become a Pittsburgh 2030 District Affiliate. Affiliates commit to the same goals, while benefiting from the District’s network and expertise. District Affiliate reduction totals are not included in overall calculations. Building professionals can delve further into the 2030 Challenge through the quarterly Bridge to 2030 educational series.

JOIN THE PITTSBURGH 2030 DISTRICT
Property Partners:

ALCO Parking
Allegheny Center Alliance Church
Allegheny County
Allegheny Health Network
Ansai STS
Avenu / InnovatePGH
Benedum Presbyterian Church
Blind & Vision Rehabilitation Services
BNY Mellon
Boy Scouts of America
BPG I 360
Braskem America
Burns Scalo Real Estate
Carlow University
Carlyle Condominium
Carnegie Library of Pittsburgh
Carnegie Mellon University
Carnegie Museums
Catholic Diocese of Pittsburgh
CBRE
Central Catholic High School
Children’s Museum
City of Pittsburgh
Community College of Allegheny County
Dollar Bank
Duquesne University
Elmhurst Group
Faros Properties
First Presbyterian Church
Forwood Group
Gateway Towers Condominium
General Services Administration
GIant Eagle
Heinz History Center
Henderson Brothers
Hertz Investment Group
Highmark
Highwoods Properties
Howmet Aerospace
JLL
Kossman Development
Life’s Work of Western PA
M&J Wilkow
McAllister Equities
McKnight Property Management
Meyer’s Management
Millcraft
Murland Associates
National Aviary
NDC Asset Management
Neighborhood Legal Services
Newmark Grubb Knight Frank
Oakland Planning and Development Corporation
Oxford Development
Penn Ave Renaissance
Penn Lofts
Pennsylvania Department of Conservation and Natural Resources (DCNR)
Peoples Gas
Phipps Conservatory and Botanical Gardens
Pittsburgh Cultural Trust
Pittsburgh Gateways
Pittsburgh Parking Authority
Pittsburgh Parks Conservancy
Pittsburgh Penguins
Pittsburgh Pirates
Pittsburgh Real Estate Team
Planned Parenthood
PNC Financial Services Group
Point Park University
Residences at Wood Street
Rodef Shalom Congregation
Rugby Realty/Draxxhall Management
Shorenstein
Soldiers & Sailors Memorial Hall & Museum Trust
Sports & Exhibition Authority of Pittsburgh and Allegheny County
St. Nicholas Greek Orthodox Cathedral
St. Paul’s Catholic Church
The Davis Companies
The Fercill Group
Trek Development Group
University of Pittsburgh
UPMC
Western Pennsylvania School for Blind Children
Westin Hotel
Winthrop Management
WQED Multimedia
Wyndham Pittsburgh University Center
YWCA Greater Pittsburgh

Green Building Alliance (GBA) advances innovation in the built environment by empowering people to create environmentally, economically, and socially vibrant places. As Greater Pittsburgh’s authority on sustainable design, GBA drives the market for healthy communities while equipping designers, manufacturers, developers, and policymakers to catalyze systemic change. GBA manages the largest 2030 District in North America, and in 2019, established Pittsburgh as the 2nd International Center of Excellence on High Performance Building in the world. GBA partners across Western Pennsylvania, with strategic alliances including the 2030 District Network, Architecture 2030, the United Nations, and International Living Future Institute.
THANK YOU TO OUR SPONSORS AND FUNDERS

TITLE SPONSOR: SIEMENS

PRESENTING SPONSOR: COVESTRO

PROGRAM SPONSORS: SUPERIOR ESSEX

ten

FUNDERS:

HILLMAN FAMILY FOUNDATIONS

District Affiliates:
A.W. Beattie Career Center
Allegheny County
Allegheny County Airport Authority/ Pittsburgh International Airport
Allegheny Health Network
ASCEND Pittsburgh
Butler Area School District
CCAC
Chatham University
City of Pittsburgh
DMI Companies
Environmental Charter School
Forest Hills Borough
Global Links
Hazelwood Green

Resource Partners:
Architecture 2030
Bridgeway Capital
Clearway Energy
Duquesne Light
Keystone Energy Efficiency Alliance (KEEA)
Peoples Gas
Pittsburgh Allegheny County Thermal
Pittsburgh Water and Sewer Authority
Southwestern Pennsylvania Commission
Urban Redevelopment Authority of Pittsburgh

Report Prepared By:
Chris Cieslak, PE, LEED AP, EcoDistricts AP, GPRO: Operations & Maintenance
Vice President of Program Strategy & Impact, 2030 District Senior Director
Paige Colao, LEED Green Associate, GPRO: Operations & Maintenance
Director of Strategy & Analysis
Ellen Conrad, LEED Green Associate
2030 District Outreach Specialist
Anthony Mendicino
Communications Director

With Assistance From:
Jenna Cramer, LFA, LEED AP, RESET AP
Executive Director
Megan Zeigler
Vice President of Planning & Policy
Ramona Crawford
Research & Impact Director
Jodi McKinney
Executive Assistant & Operations Manager

Design by Little Kelpie
REFERENCES

4. https://www.youtube.com/watch?v=NE8GqX0XHk&ab_channel=PittDiversity